Genetic testing helps predict disease recurrence in myelodysplastic syndrome

A DNA-based analysis of blood cells soon after a stem cell transplant can predict likelihood of disease recurrence in patients with myelodysplastic syndrome (MDS), a group of cancerous disorders characterized by dysfunctional blood cells, according to new research at Washington […]

Family tree of blood production reveals hundreds of thousands of stem cells

Adult humans have many more blood-creating stem cells in their bone marrow than previously thought, ranging between 50,000 and 200,000 stem cells. Researchers from the Wellcome Sanger Institute and Wellcome—MRC Cambridge Stem Cell Institute developed a new approach for studying stem cells, based on methods used in ecology.

stem cell

Credit: CC0 Public Domain 

The results, published today (5 September) in Nature, present a new opportunity for studying, in humans, how stem cells throughout the body change during aging and disease. Using whole genome sequencing to build and analyze a family tree of cells, this work could lead to insights into how cancers develop and why some stem cell therapies are more effective than others.All of the organs in our body rely on stem cells in order to maintain their function. Adult stem cells found in tissues or organs are a self-sustaining population of cells whose offspring make all of the specialized cell types within a tissue.

Blood stem cells drive the production of blood and are used in treatments and therapies such as bone marrow transplantations—a treatment for leukaemia that replaces cancerous blood cells with healthy blood stem cells.

However, blood stem cells in humans are not fully understood, with even some of the most basic questions, such as how many cells there are and how they change with age, not yet answered.

For the first time, scientists have been able to determine how many blood stem cells are actively contributing in a healthy human. Researchers adapted a method traditionally used in ecology for tracking population size to estimate that a healthy adult has between 50,000 and 200,000 stem cells contributing to their blood cells at any one time.

Dr. Peter Campbell, a joint senior author from the Wellcome Sanger Institute, said: “We discovered that healthy adults have between 50,000 and 200,000 blood stem cells, which is about ten times more than previously thought. Whereas previous estimates of blood stem cell numbers were extrapolated from studies in mice, cats or monkeys, this is the first time stem cell numbers have been directly quantified in humans. This new approach opens up avenues into studying stem cells in other human organs and how they change between health and disease, and as we age.”

Scientists found the number of stem cells in the blood increases rapidly through childhood and reach a plateau by adolescence. The number of stem cells stays relatively constant throughout adulthood.

In the study, researchers conducted whole genome sequencing on 140 blood stem cell colonies from a healthy 59-year-old man. The team adapted a capture-recapture method, traditionally used in ecology to monitor species populations, to ‘tag’ stem cells and compare them to the population of blood cells.

Henry Lee-Six, the first author from the Wellcome Sanger Institute, said: “We isolated a number of stem cells from the blood and bone marrow and sequenced their genomes to find mutations. The mutations act like barcodes, each of which uniquely tags a stem cell and its descendants. We then looked for these mutations in the rest of the blood to see what fraction of blood cells carry the same barcodes and from this, we could estimate how many stem cells there were in total.”

Current methods for measuring stem cell population size typically involve genome engineering, meaning they are limited to model organisms, such as mice. By analyzing naturally-occurring mutations in human cells, researchers can use the accumulation of mutations to track stem cells to see how stem cell dynamics change over a person’s lifetime.

Dr. David Kent, a joint senior author from the Wellcome-MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, said: “This new approach is hugely flexible. Not only can we measure how many stem cells exist, we can also see how related they are to each other and what types of blood cells they produce. Applying this technique to samples from patients with blood cancers, we should now be able to learn how single cells outcompete normal cells to expand their numbers and drive a cancer. As the cost of genomic sequencing comes down, it is transforming scientific research such that studies previously thought to be impossibly large, are now becoming routine. It is a very exciting time to be working in this space.”

UCI-led research identifies properties of stem cells that determine cell fate

Discovery may improve ability to control the formation of mature cells from stem cell transplants UNIVERSITY OF CALIFORNIA – IRVINE Researchers from the University of California, Irvine have identified intrinsic cell properties that influence the fate of neural stem cells, […]

Stem cells show promise as drug delivery tool for childhood brain cancer

The latest in a series of laboratory breakthroughs could lead to a more effective way to treat the most common brain cancer in children. Scientists from the University of North Carolina Lineberger Comprehensive Cancer Center, UNC Eshelman School of Pharmacy, […]

Stem Cells from Baby Teeth Regenerate Dental Pulp after Implantation into Injured Teeth

Going to the dentist is usually not anyone’s idea of fun.  In particular, root canals are no fun.  However, if you have an abscessed tooth that hurts like the dickens, then a root canal may be your best bet for […]

Scalable and Efficient Bioprocess for Manufacturing Human Pluripotent Stem Cell-Derived Endothelial Cells

Highlights hPSCs can be differentiated into endothelial cells in 3D thermoreversible hydrogels The differentiation efficiency is similar to this in 2D cultures The global gene expression and phenotypes are similar to ECs made in 2D cultures Summary Endothelial cells (ECs) […]

New method grows brain cells from stem cells quickly and efficiently

Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells. Astrocytes play a significant role in neurodegenerative diseases. The new method reduces the time required to produce the cells […]

The Rise of Direct Cell Reprogramming

There has been tremendous activity over the last decade in the development of stem cells therapeutics, which have relied on stem cell differentiation protocols, as well as techniques for direct cell reprogramming. Today, there are over 4,700 “stem cell” trials registered on ClinicalTrials.gov and […]

Can Stem Cell Fillings Replace a Root Canal Procedure?

Those who live in fear of the infamous root canal – maligned worldwide for its painful nature and disliked for the fact that it kills the tooth – will find relief in the news that researchers have found a promising alternative in […]